跳到主要内容
版本:5.0

基本最佳实践

生产者

发送消息注意事项

Tag的使用

一个应用尽可能用一个Topic,而消息子类型则可以用tags来标识。tags可以由应用自由设置,只有生产者在发送消息设置了tags,消费方在订阅消息时才可以利用tags通过broker做消息过滤,5.x SDK 可以调用messageBuilder.setTag("messageTag"),历史版本可以调用 message.setTags("messageTag")。

Keys的使用

每个消息在业务层面一般建议映射到业务的唯一标识并设置到keys字段,方便将来定位消息丢失问题。服务器会为每个消息创建索引(哈希索引),应用可以通过topic、key来查询这条消息内容,以及消息被谁消费。由于是哈希索引,请务必保证key尽可能唯一,这样可以避免潜在的哈希冲突。常见的设置策略使用订单Id、用户Id、请求Id等比较离散的唯一标识来处理。

日志的打印

消息发送成功或者失败要打印消息日志,用于业务排查问题。Send消息方法只要不抛异常,就代表发送成功。

消息发送失败处理方式

Producer的send方法本身支持内部重试,5.x SDK的重试逻辑参考发送重试策略

以上策略也是在一定程度上保证了消息可以发送成功。如果业务要求消息发送不能丢,仍然需要对可能出现的异常做兜底,比如调用send同步方法发送失败时,则尝试将消息存储到db,然后由后台线程定时重试,确保消息一定到达Broker。

上述DB重试方式为什么没有集成到MQ客户端内部做,而是要求应用自己去完成,主要基于以下几点考虑:首先,MQ的客户端设计为无状态模式,方便任意的水平扩展,且对机器资源的消耗仅仅是cpu、内存、网络。其次,如果MQ客户端内部集成一个KV存储模块,那么数据只有同步落盘才能较可靠,而同步落盘本身性能开销较大,所以通常会采用异步落盘,又由于应用关闭过程不受MQ运维人员控制,可能经常会发生 kill -9 这样暴力方式关闭,造成数据没有及时落盘而丢失。第三,Producer所在机器的可靠性较低,一般为虚拟机,不适合存储重要数据。综上,建议重试过程交由应用来控制。

消费者

消费过程幂等

RocketMQ 无法避免消息重复(Exactly-Once),所以如果业务对消费重复非常敏感,务必要在业务层面进行去重处理。可以借助关系数据库进行去重。首先需要确定消息的唯一键,可以是msgId,也可以是消息内容中的唯一标识字段,例如订单Id等。在消费之前判断唯一键是否在关系数据库中存在。如果不存在则插入,并消费,否则跳过。(实际过程要考虑原子性问题,判断是否存在可以尝试插入,如果报主键冲突,则插入失败,直接跳过)

msgId一定是全局唯一标识符,但是实际使用中,可能会存在相同的消息有两个不同msgId的情况(消费者主动重发、因客户端重投机制导致的重复等),这种情况就需要使业务字段进行重复消费。

消费速度慢的处理方式

提高消费并行度

绝大部分消息消费行为都属于 IO 密集型,即可能是操作数据库,或者调用 RPC,这类消费行为的消费速度在于后端数据库或者外系统的吞吐量,通过增加消费并行度,可以提高总的消费吞吐量,但是并行度增加到一定程度,反而会下降。所以,应用必须要设置合理的并行度。 如下有几种修改消费并行度的方法:

  • 同一个 ConsumerGroup 下,通过增加 Consumer 实例数量来提高并行度。可以通过加机器,或者在已有机器启动多个进程的方式。
  • 提高单个 Consumer 的消费并行线程,5.x PushConsumer SDK 可以通过PushConsumerBuilder.setConsumptionThreadCount() 设置线程数,SimpleConsumer可以由业务线程自由增加并发,底层线程安全;历史版本SDK PushConsumer可以通过修改参数 consumeThreadMin、consumeThreadMax实现。

批量方式消费

某些业务流程如果支持批量方式消费,则可以很大程度上提高消费吞吐量,例如订单扣款类应用,一次处理一个订单耗时 1 s,一次处理 10 个订单可能也只耗时 2 s,这样即可大幅度提高消费的吞吐量。建议使用5.x SDK的SimpleConsumer,每次接口调用设置批次大小,一次性拉取消费多条消息。

重置位点跳过非重要消息

发生消息堆积时,如果消费速度一直追不上发送速度,如果业务对数据要求不高的话,可以选择丢弃不重要的消息。建议使用重置位点功能直接调整消费位点到指定时刻或者指定位置。

优化每条消息消费过程

举例如下,某条消息的消费过程如下:

  • 根据消息从 DB 查询【数据 1】
  • 根据消息从 DB 查询【数据 2】
  • 复杂的业务计算
  • 向 DB 插入【数据 3】
  • 向 DB 插入【数据 4】

这条消息的消费过程中有4次与 DB的 交互,如果按照每次 5ms 计算,那么总共耗时 20ms,假设业务计算耗时 5ms,那么总过耗时 25ms,所以如果能把 4 次 DB 交互优化为 2 次,那么总耗时就可以优化到 15ms,即总体性能提高了 40%。所以应用如果对时延敏感的话,可以把DB部署在SSD硬盘,相比于SCSI磁盘,前者的RT会小很多。

消费打印日志

如果消息量较少,建议在消费入口方法打印消息,消费耗时等,方便后续排查问题。

   new MessageListener() {
@Override
public ConsumeResult consume(MessageView messageView) {
LOGGER.info("Consume message={}", messageView);
//Do your consume process
return ConsumeResult.SUCCESS;
}
}

如果能打印每条消息消费耗时,那么在排查消费慢等线上问题时,会更方便。但如果线上环境TPS很高,不建议开启,避免日志太多影响性能。

Broker

Broker 角色

Broker 角色分为 ASYNC_MASTER(异步主机)、SYNC_MASTER(同步主机)以及SLAVE(从机)。如果对消息的可靠性要求比较严格,可以采用 SYNC_MASTER加SLAVE的部署方式。如果对消息可靠性要求不高,可以采用ASYNC_MASTER加SLAVE的部署方式。如果只是测试方便,则可以选择仅ASYNC_MASTER或仅SYNC_MASTER的部署方式。

FlushDiskType

SYNC_FLUSH(同步刷新)相比于ASYNC_FLUSH(异步处理)会损失很多性能,但是也更可靠,所以需要根据实际的业务场景做好权衡。

Broker 配置

参数名默认值说明
listenPort10911接受客户端连接的监听端口
namesrvAddrnullnameServer 地址
brokerIP1网卡的 InetAddress当前 broker 监听的 IP
brokerIP2跟 brokerIP1 一样存在主从 broker 时,如果在 broker 主节点上配置了 brokerIP2 属性,broker 从节点会连接主节点配置的 brokerIP2 进行同步
brokerNamenullbroker 的名称
brokerClusterNameDefaultCluster本 broker 所属的 Cluser 名称
brokerId0broker id, 0 表示 master, 其他的正整数表示 slave
storePathCommitLog$HOME/store/commitlog/存储 commit log 的路径
storePathConsumerQueue$HOME/store/consumequeue/存储 consume queue 的路径
mapedFileSizeCommitLog1024 1024 1024(1G)commit log 的映射文件大小
deleteWhen04在每天的什么时间删除已经超过文件保留时间的 commit log
fileReserverdTime72以小时计算的文件保留时间
brokerRoleASYNC_MASTERSYNC_MASTER/ASYNC_MASTER/SLAVE
flushDiskTypeASYNC_FLUSHSYNC_FLUSH/ASYNC_FLUSH SYNC_FLUSH 模式下的 broker 保证在收到确认生产者之前将消息刷盘。ASYNC_FLUSH 模式下的 broker 则利用刷盘一组消息的模式,可以取得更好的性能。